200=4.9t^2+5t

Simple and best practice solution for 200=4.9t^2+5t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 200=4.9t^2+5t equation:



200=4.9t^2+5t
We move all terms to the left:
200-(4.9t^2+5t)=0
We get rid of parentheses
-4.9t^2-5t+200=0
a = -4.9; b = -5; c = +200;
Δ = b2-4ac
Δ = -52-4·(-4.9)·200
Δ = 3945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3945}=\sqrt{1*3945}=\sqrt{1}*\sqrt{3945}=1\sqrt{3945}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-1\sqrt{3945}}{2*-4.9}=\frac{5-1\sqrt{3945}}{-9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+1\sqrt{3945}}{2*-4.9}=\frac{5+1\sqrt{3945}}{-9.8} $

See similar equations:

| 2x+(x-8)=7(4+x)+8x | | 5(2x-3)-3=-2(4-3x) | | 50=6x+3 | | 5(2x-3)-3=-2(4-3x | | -5(3j-10)=-25 | | 3^(5x-9)=((1)/(27))^(9x+3) | | 6x5=2 | | -2(5x+4)=11 | | x-1/2+3x+3/4=1 | | -3(4y+2)=-18 | | 12x=4x^2 | | n/6+4=5 | | 2-a=9 | | -2-5x=38 | | 3(4x+8)=14x+6-2x+18 | | -5n-4=-34 | | 12-4l=8l | | X^3+7x^2+9x-63=0 | | 10-2y-4=0 | | 44x+61=44x+62 | | 100+45m=460 | | 9x^2-3=12 | | 14-t4=2 | | 7x+8x-8=3(5x+5) | | 2y+1.75=6.75 | | -172+4x-14x=78 | | 2r-40=-2800 | | 17x^2=10x | | 2x+1.75=6.75 | | 6y-12y^2=0 | | 5(4+m)=10 | | 55x+2095x-17=43(50x+67) |

Equations solver categories